

 J_{Ω}

THE FRENCH AEROSPACE LAB

retour sur innovation

Dominique.poullin@onera.fr

www.onera.fr

PASSIVE DVB RADAR : UAV detection and localisation

- INTRODUCTION
- DVB INTEREST (against UAV)
- EXPERIMENTAL RESULTS
 - 5 BISTATIC CONFIGURATIONS
 - INCLUDING SFN (Single Frequency Network)
- CONCLUSION

PASSIVE DVB RADAR against UAV INTRODUCTION

DVB

REQUIREMENTS (UAV detection)

- LOW ALTITUDE COVERAGE
- SMALL TARGETS
- SLOW AND MANOEUVERING TARGETS
- CONTINUOUS DETECTIONS (from "0" to a few kilometres).
- DETECTION 24h/24h
- DISCRIMINATION CAPABILITIES

PASSIVE DVB RADAR against UAV CONFIGURATION

TARGET generally at 3 kilometres from the receiver

PASSIVE DVB RADAR Blade modulation

Target

Multirotor at 3 kilometres from the receiver

THE FRENCH AEROSPACE LAB

PASSIVE DVB RADAR SFN DETECTION

Target

Fixed wing at 3 kilometres from the receiver Circular(periodic) flight close to stationary point

PASSIVE DVB RADAR SFN DETECTION : angle estimation

Target

Fixed wing at 3 kilometres from the receiver Circular(periodic) flight close to stationary point

PASSIVE DVB RADAR TRANSMITTER 3 : blade detection

Target

Multirotor at 3 kilometres from the receiver

Sationary position

THE FRENCH AEROSPACE LAB

PASSIVE DVB RADAR TRANSMITTER 3 : direct localisation

Target

Multirotor (Sationary position) and fixed wings : superimposed (X,Y) = f (range, azimuth)

PASSIVE DVB RADAR 4th CONFIGURATION: direct localisation

Target

Multirotor with manoeuvers

Transmitter at « 30 » kilometres from the receiver

CARTESIAN MAP

PASSIVE DVB RADAR against UAV CONCLUSION

UAV DETECTION (MULTISTATIC)

up to 3 kilometres (or equivalent) and more

		ويتورج الم	n eren	an se	a soc	004.073	
	۲í						-
	-1						
	• •	ee co J	aee.us :	··· 480			
	· .].						
	. I						
1							
Ŧ.	1						
ŝ	1						
	0						
	14					• •	
			•	•	•	•	
	er.	dele la con-	- dealer is	6- C-62 -			

over 5 +2 configurations (including SFN)

UAV CLASSIFICATION

Blade modulation detection (for multi-rotors)

UAV LOCALISATION

Accurate localisation even under bistatic configuration

PASSIVE DVB RADAR against UAV FOLLOW-ON

POSSIBLE ENHANCEMENTS

TRACKING implementation

DISCRIMINATION studies Interpretation of blades modulation???

